Process Welding Systems is now offering Plasma and TIG welding Training and process support.

 Plasma and TIG welding Training

Process Welding Systems is now offering Plasma and TIG welding Training and process support.

Process Welding Systems, the leader in micro-welding applications now is offering on-site training and welding process support. Training programs include welding process theory, applications, and controller programming. Both classroom and hands on-training is provided.

This training is great for operators, shop floor management, engineers and process support personnel.

In addition, Process Welding Systems can provide welding process support to improve existing processes, increase first pass yields, improve weld quality, and help you solve welding issues. We are calling this a process “tune-up” where our experts can advise your team to help improve your welding processes.

Contact Process Welding Systems to schedule your training or process “tune-up” today and keep your equipment operating at peak efficiency.

Keyhole Fusion Welding

WHAT IS KEYHOLE FUSION WELDING AND HOW CAN IT HELP YOU?

THIS TYPE OF WELD IS GENERALLY OBTAINED BY USING A STIFF. CONSTRICTED ARC. IN THE KEYHOLE MODE PENETRATION IS OBTAINED BY THE COMBINATION OF PLASMA AND GAS MOMENTUM WITH THERMAL CONDUCTION. WITH INCREASE PLASMA GAS FLOW RATED AND PLASMA SETBACK, A HOLE KNOWN AS THE KEYHOLE IS PIERCED THROUGH THE ENTIRE METAL THICKNESS AT THE LEADING EDGE OF THE WELD PUDDLE, WHERE THE FORCES OF THE PLASMA JET (COLUMN) DISPLACE TH E MOLTEN METAL. AS THE TORCH TRAVEL PROGRESSES AT A CONSISTENT SPEED, THE MOLTEN METAL, SUPPORTED BY THE SURFACE TENSION FLOWS BEHIND THE KEYHOLE TO FORM THE WELD BEAD.

KEYHOLE WELDING IS ALMOST EXCLUSIVELY PERFORMED IN THE AUTOMATED MODE. TYPICALLY THIS TECHNIQUE IS USED FOR SQUARE BUTT WELDS ON MATERIAL THICKNESS FROM 0.093”(2.4 MM) TO 0.250” (6.4 MM) REQU IRING 100% PENETRATION IN A SINGLE PASS. MANUAL KEYHOLE WEL DING IS NOT RECOMMENDED BECAUSE OF DIFFICULTIES IN MAINTAINING CONSISTENT TRAVEL SPEEDS, TORCH POSITION, OR FILLER MATERIAL ADDITION.

 

ADVANTAGES:

1) REDUCED CURRENT LEVE LS

2) SINGLE PASS WELDS

3) MINIMIZED WELD PREPA RATION

4) NARROWER WELD BEADS

5) VISUAL PROOF OF 100% PENETRATION

6) LESS FILLER MATERIAL REQUIRED

___________________________________

DISADVANTAGES:

(1) LIMITED TO FLAT, HORIZONTAL, AND VERTICAL UP POSIT IONS

2) MORE SENSITIVE TO VARIABLE CHANGES

3) LIMITED TO AUTOMA TED OPERATIONS

WELDING SAFETY 101

Eye Safety First 100% of the time.

Eye injuries account for one – quarter of all welding injuries, making them by far the most common injury for welders. The best way to control eye injuries is also the most simple: proper selection and use of eye protection. Helmets alone do not offer enough protection. Welders should wear goggles or safety glasses with side shields that comply with ANSI Z87.1 under welding helmets and always wear goggles or other suitable eye protection when gas welding or oxygen cutting. To help in reducing eye injuries, you should educate workers about all of the dangers they face and should implement an eye protection plan that outlines proper welding behavior. Damage from ultraviolet light can occur very quickly. Normally absorbed in the cornea and lens of the eye, ultraviolet radiation (UVR) often causes arc eye or arc flash, a very painful but seldom permanent injury that is characterized by eye swelling, tearing, and pain. While most welding related eye injuries are reversible, with more than half of injured workers returning to work in less than two days and 95 percent in less than seven days, some eye injuries are irreversible and permanent visual impairment occurs. This is especially true with infrared and visible spectrum (bright light) radiation. Both can penetrate through to the retina and — although this is rare — can cause permanent retinal damage, including cataracts, diminished visual acuity, and higher sensitivity to light and glare.

As a general rule, select filter shades or lenses beginning with a shade too dark to see the welding zone. Then evaluate a lighter shade that provides adequate vision without going below the minimum protective shade. Most protective eyewear manufacturers offer 2.0, 3.0, and 5.0 filter shades, which protect against harmful optical radiation generated when working with molten metal, cutting, soldering, and brazing. A filter shade 2.0 lens allows 29 – 43 percent of light to be transmitted, filter shade 3.0 lenses allow 8.5 – 18 percent of light to be transmitted, and filter shade 5.0 lenses allow 1.8 – 3.6 percent of light to be transmitted. These shades are available in protective eyewear, goggles, and welding helmets.

To avoid ultraviolet skin burns protective clothing must be worn. The selection process for the most appropriate protective clothing for various welding and cutting operations will vary with the task size and location of the work to be performed. By carefully examining which hazards are possible, new technologies will often provide greater comfort, which can improve employee acceptance and increase wearing of the proper protective apparel.

WELDING FUMES

Welding fumes are very small particles that are formed when the vaporized metal rapidly condenses in air. They are typically too small to be seen by the naked eye but collectively form a visible plume. The health effects associated with metal fumes depend on the specific metals present in the fumes; they may range from short-term illnesses, such as metal fumes fever (i.e., flu-like symptoms), to long term lung damage and/ or neurological disorders. If the metal has been degreased with  chlorinated solvent, other airborne gases (such as phosgene, hydrogen chloride, chlorine gas, etc.) maybe produced. These gases generally cause irritated eyes , nose and respiratory system, and symptoms may be delayed. Always read the Material Safety Data Sheets supplied with the material you are using. These MSDSs will provide information regarding the kind and amount of fumes as gases that may be dangerous to your health. Fume extraction is the best way to remove dangerous fumes from your welding environment. There are many fume extractors on the market to choose from.

ELECTRIC SHOCK

The human body conducts electricity. Even low currents may cause severe health effects. Spasms, burns, muscle paralysis, or death can result depending on the amount of the current flowing through the body, the route it takes, and the duration of exposure.

If a person touches a live conductor, current may flow through the body to the ground and cause a shock. Increased electrical contact with the weld ground increases the risk of shock. Avoid standing in water, on wet surfaces, or working with wet hands or wearing sweaty garments. Small shocks could surprise you and cause you to slip and fall, possibly from a high place.

What should I do in case of electric shock?

Call for medical help. DO NOT touch the victim with y o ur “bare hands” until he or she is away from the live electrical source. Turn off the power at the fuse box or circuit breaker panel if an appliance or electrical equipment is the electrical source or, if you can do it safely, turn off the appliance or electrical equipment and unplug it. Just turning off the equipment is not sufficient. If the electricity cannot be turned off and the victim is still in contact with the electrical source, decide if you must move the victim or push the wire away from the victim (call for emergency help if the wire is a high voltage power line). Insulate yourself if you must move a victim away from a live contact – wear dry gloves or cover your hands with cloth and stand on dry insulating material like cardboard, wood or clothes. Ensure you have good footing and will not slip or fall when trying to move the victim. Do not move the victim if there is a possibility of neck injury (from a fall, for example) unless it is absolutely necessary. Give artificial respiration if the victim is not breathing.  Give CPR if the victim’s heart has stopped (only if you are trained in CPR).

Relationship between electrode and welding arc

How Is a Welding Arc Established?
A sequence of events takes place between the electrode and the piece being welded. To strike the welding arc, a high frequency generator is used to provide a high voltage, low current superimposed on the welding current. The effect is a spark which creates a conductive path through the shielding gas

Welding Electrodes

The electrode used in GTAW is made of tungsten or a tungsten alloy, because tungsten has the highest melting temperature among pure metals, at 3,422 °C (6,192 °F). As a result, the electrode is not consumed during welding, though some erosion (called burn-off) can occur. Electrodes can have either a clean finish or a ground finish—clean finish electrodes have been chemically cleaned, while ground finish electrodes have been ground to a uniform size and have a polished surface, making them optimal for heat conduction. The diameter of the electrode can vary between 0.5 and 6.4 millimetres (0.02 and 0.25 in), and their length can range from 75 to 610 millimetres (3.0 to 24 in).

Pure tungsten electrodes (classified as WP or EWP) are general purpose and low cost electrodes. They have poor heat resistance and electron emission. They find limited use in AC welding of e.g. magnesium and aluminum.

Cerium oxide (or ceria) as an alloying element improves arc stability and ease of starting while decreasing burn-off. Cerium addition is not

Using an alloy of lanthanum oxide (or lanthana) has a similar effect. Addition of 1% lanthanum has the same effect as 2% of cerium.

Thorium oxide (or thoria) alloy electrodes were designed for DC applications and can withstand somewhat higher temperatures while providing many of the benefits of other alloys. However, it is slightly radioactive. Inhalation of the thorium grinding dust during preparation of the electrode is hazardous to one’s health. Some electrode grinders have vacuum systems to prevent inhalation during grinding. As a replacement to thoriated electrodes, electrodes with larger concentrations of lanthanum oxide can be used. Larger additions than 0.6% do not have additional improving effect on arc starting, but they help with electron emission.

Higher percentage of thorium also makes tungsten more resistant to contamination.

Electrodes containing zirconium oxide (or zirconia) increase the current capacity while improving arc stability and starting and increasing electrode life. Zirconium-tungsten electrodes melt easier.

Ionized. A plasma exist during any arc occurrence. The energy level may vary enormously due to the ionization grade of the gas mixture. Essentially this spark allows the arc to be initiated

Were on the web www.pwsweld.com while the electrode and the work piece are separated.

APPLICATIONS OF PLASMA WELDING

When welding out gassing causes contamination of the tungsten electrode during GTAW welding and drastically shortens the life of tungsten electrode. Shortened electrode life decreases production time. When using PLASMA the electrode is protected . Tungsten electrode life is much longer and production is higher.

PLASMA stand off arc distance is not critical like It is with GTAW. The stand off arc distance can vary with PLASMA will still produce good welds. A good example is butt fusion edge welds of stainless steel. A well known client that manufacturers stainless steel thermos bottles was having problems welding the bottles with GTAW because of runout of the parts. PLASMA solved their production problems!

OFTEN OVERLOOKED PLASMA OFFERS SPEED AND AFFORDABILITY

If you have drawings / samples let us evaluate your part for PLASMA!

We Can Show you How to Implement a Production System so you can Better Compete Globally

Where we Stand Now.

With international competition on the rise, how do you keep your customers coming back? In countries like China and India manufacturing exports continue to grow. These countries have implemented a new policy which emphasizes the development of domestic innovative capability. This has led to increased spending on R&D and a growing researcher base. Soon, not only will the part be available at a lower cost but at comparable quality as well. If developed countries are to remain competitive in the global economy, they will have to rely more on technology. Investment in technology is therefore a crucial factor for sustained economic health. A continuous process of change, innovation and productivity will allow you to be competitive as the global market continues to evolve. Innovate, or lose.

Whoever makes things better, cheaper, faster wins!

America must continue to be the leader.

STAYING COMPETITIVE

In order to compete with countries like China and India we need to adopt equipment and technology that will lower production cost while enhancing the product quality at the same time. Companies must now

look for new and innovative ways to improve their processes, their workers productivity, and, ultimately, their overall equipment effective- ness.

________________________________________________________________

LET PROCESS WELDING SYSTEMS HELP

BENEFITS OF AUTOMATED WELDING

With quality and productivity as buzzwords, and customers demanding superior products, implementing an automated welding system may determine whether a company remains competitive. Automating your welding production offer three main advantages: decreased variable labor costs, improved weld quality, and decreased scrap.

Decreased Variable Labor

ImprovedWeld Quality:

Mechanized welding improves weld integrity and repeatability. Humans tend to “smooth over” a mistake with the torch, hiding lack of penetration or a possible flawed weld.

Decreased Scrap/Rework:

It’s never good to throw away parts with accumulated significant value because of a welders lack of detail. Automating weld parameters and part placement decreased the error potential.

Costs: Amachinecontrolledsys- tem always repeats the same welding parameters. Reliance on human welders dramatically in- creases a manufacturer’s labor costs. A fully automatic system with sufficient stations can run at four or at eight times the pace of a skilled welder.

A fully automatic system with sufficient stations can run at four or at eight times the pace of a skilled welder.

SOME OF OUR CUSTOMERS

  •   General Atomics
  •   Teledyne Energy
  •   McKenna Machine
  •   Delphi Automotive
  •   Fuel Cell Energy Corp.

 Angio-Dynamics
 Pratt & Whitney
 Parker Hannifin Corp.  Lake Region
 Draper Laboratory

What You Need To Know About Gas Regulators

What Is The Difference Between Single Stage and Dual Stage Regulators

Gas pressure regulators are used to reduce the pressure of gas supplied from a high-pressure cylinder of gas to a workable level that can be safely used for operating equipment and instruments. There are two basic types of gas pressure regulators: single-stage and two-stage. Single-stage pressure regulators reduce the cylinder pressure to the delivery or outlet pressure in one step.

Two-stage pressure regulators reduce the cylinder pressure to a working level in two steps. Since the performance of each is influenced by mechanical characteristics, the choice of gas regulator depends on the type of application for which it is intended.

The two most important parameters to be considered are droop and supply pressure effect.

Droop is the difference in delivery pressure between zero flow conditions and the gas regulator’s maximum flow capacity. Supply pressure effect is the variation in delivery pressure as supply pressure decreases while the cylinder empties. For most regulators, a decrease in inlet pressure causes the delivery pressure to increase.

The effect of these differences on performance can be illustrated with some examples. For instance, when a centralized gas delivery system is supplying a number of different chromatographs, flow rates are apt to be fairly constant. Supply pressure variations, however, may be abrupt especially when automatic changeover manifolds are used. In this scenario, a two-stage regulator with a narrow accuracy envelope (supply pressure effect) and a relatively steep droop should be used to avoid a baseline shift on the chromatographs.

Single-stage and two-stage gas regulators have different droop characteristics and respond differently to changing supply pressure. The single-stage regulator shows little droop with varying flow rates, but a relatively large supply pressure effect. Conversely, the two-stage regulator shows a steeper slope in droop but only small supply pressure effects.

On the other hand, if gas is being used for a short duration instrument calibration, a single-stage gas regulator with a wide accuracy envelope (supply pressure effect) but a comparatively flat droop should be chosen. This will eliminate the need to allow the gas to flow at a constant rate before the calibration can be done.

High Purity Gas Regulators

The ideal construction for high-purity gas service is a gas regulator that has a stainless steel diaphragm. Such regulators are non-contaminating and assure satisfactory use for all applications of noncorrosive and mildly corrosive gases.

Regulators for corrosive gases must be selected from those recommended with each gas listing. A gas regulator equipped with a stainless steel diaphragm has several advantages over the elastomeric type. It does not outgas organic materials and it also prevents the diffusion of atmospheric oxygen into the carrier gas. Both Buna-N and Neoprene diaphragms are permeable to oxygen. The chemical potential of oxygen between the carrier gas and the atmosphere provides sufficient driving force for oxygen to intrude the carrier gas through a permeable diaphragm.